3.4.1 \(\int \frac {1}{x^{3/2} (a+b x^2)^2} \, dx\) [301]

Optimal. Leaf size=230 \[ -\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}+\frac {5 \sqrt [4]{b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}-\frac {5 \sqrt [4]{b} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}-\frac {5 \sqrt [4]{b} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}+\frac {5 \sqrt [4]{b} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}} \]

[Out]

5/8*b^(1/4)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(9/4)*2^(1/2)-5/8*b^(1/4)*arctan(1+b^(1/4)*2^(1/2)*x^(
1/2)/a^(1/4))/a^(9/4)*2^(1/2)-5/16*b^(1/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(9/4)*2^(1/
2)+5/16*b^(1/4)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(9/4)*2^(1/2)-5/2/a^2/x^(1/2)+1/2/a/(b
*x^2+a)/x^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 230, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {296, 331, 335, 303, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {5 \sqrt [4]{b} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}-\frac {5 \sqrt [4]{b} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{4 \sqrt {2} a^{9/4}}-\frac {5 \sqrt [4]{b} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}+\frac {5 \sqrt [4]{b} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^(3/2)*(a + b*x^2)^2),x]

[Out]

-5/(2*a^2*Sqrt[x]) + 1/(2*a*Sqrt[x]*(a + b*x^2)) + (5*b^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(
4*Sqrt[2]*a^(9/4)) - (5*b^(1/4)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(4*Sqrt[2]*a^(9/4)) - (5*b^(1/4
)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(8*Sqrt[2]*a^(9/4)) + (5*b^(1/4)*Log[Sqrt[a] + S
qrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(8*Sqrt[2]*a^(9/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{x^{3/2} \left (a+b x^2\right )^2} \, dx &=\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}+\frac {5 \int \frac {1}{x^{3/2} \left (a+b x^2\right )} \, dx}{4 a}\\ &=-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}-\frac {(5 b) \int \frac {\sqrt {x}}{a+b x^2} \, dx}{4 a^2}\\ &=-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}-\frac {(5 b) \text {Subst}\left (\int \frac {x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{2 a^2}\\ &=-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}+\frac {\left (5 \sqrt {b}\right ) \text {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{4 a^2}-\frac {\left (5 \sqrt {b}\right ) \text {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{4 a^2}\\ &=-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}-\frac {5 \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{8 a^2}-\frac {5 \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{8 a^2}-\frac {\left (5 \sqrt [4]{b}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} a^{9/4}}-\frac {\left (5 \sqrt [4]{b}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} a^{9/4}}\\ &=-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}-\frac {5 \sqrt [4]{b} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}+\frac {5 \sqrt [4]{b} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}-\frac {\left (5 \sqrt [4]{b}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}+\frac {\left (5 \sqrt [4]{b}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}\\ &=-\frac {5}{2 a^2 \sqrt {x}}+\frac {1}{2 a \sqrt {x} \left (a+b x^2\right )}+\frac {5 \sqrt [4]{b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}-\frac {5 \sqrt [4]{b} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{9/4}}-\frac {5 \sqrt [4]{b} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}+\frac {5 \sqrt [4]{b} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{9/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.28, size = 138, normalized size = 0.60 \begin {gather*} \frac {-\frac {4 \sqrt [4]{a} \left (4 a+5 b x^2\right )}{\sqrt {x} \left (a+b x^2\right )}+5 \sqrt {2} \sqrt [4]{b} \tan ^{-1}\left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+5 \sqrt {2} \sqrt [4]{b} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{8 a^{9/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(3/2)*(a + b*x^2)^2),x]

[Out]

((-4*a^(1/4)*(4*a + 5*b*x^2))/(Sqrt[x]*(a + b*x^2)) + 5*Sqrt[2]*b^(1/4)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*
a^(1/4)*b^(1/4)*Sqrt[x])] + 5*Sqrt[2]*b^(1/4)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)]
)/(8*a^(9/4))

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 136, normalized size = 0.59

method result size
derivativedivides \(-\frac {2 b \left (\frac {x^{\frac {3}{2}}}{4 b \,x^{2}+4 a}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{2}}-\frac {2}{a^{2} \sqrt {x}}\) \(136\)
default \(-\frac {2 b \left (\frac {x^{\frac {3}{2}}}{4 b \,x^{2}+4 a}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{a^{2}}-\frac {2}{a^{2} \sqrt {x}}\) \(136\)
risch \(-\frac {2}{a^{2} \sqrt {x}}-\frac {b \,x^{\frac {3}{2}}}{2 a^{2} \left (b \,x^{2}+a \right )}-\frac {5 \sqrt {2}\, \ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )}{16 a^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {5 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{8 a^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {5 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{8 a^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(158\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(3/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

-2*b/a^2*(1/4*x^(3/2)/(b*x^2+a)+5/32/b/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+
(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)
*x^(1/2)-1)))-2/a^2/x^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.68, size = 208, normalized size = 0.90 \begin {gather*} -\frac {5 \, b x^{2} + 4 \, a}{2 \, {\left (a^{2} b x^{\frac {5}{2}} + a^{3} \sqrt {x}\right )}} - \frac {5 \, b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{16 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/(b*x^2+a)^2,x, algorithm="maxima")

[Out]

-1/2*(5*b*x^2 + 4*a)/(a^2*b*x^(5/2) + a^3*sqrt(x)) - 5/16*b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(
1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(
2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt
(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4
)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)))/a^2

________________________________________________________________________________________

Fricas [A]
time = 1.10, size = 208, normalized size = 0.90 \begin {gather*} \frac {20 \, {\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {b}{a^{9}}\right )^{\frac {1}{4}} \arctan \left (-\frac {125 \, a^{2} b \sqrt {x} \left (-\frac {b}{a^{9}}\right )^{\frac {1}{4}} - \sqrt {-15625 \, a^{5} b \sqrt {-\frac {b}{a^{9}}} + 15625 \, b^{2} x} a^{2} \left (-\frac {b}{a^{9}}\right )^{\frac {1}{4}}}{125 \, b}\right ) - 5 \, {\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {b}{a^{9}}\right )^{\frac {1}{4}} \log \left (125 \, a^{7} \left (-\frac {b}{a^{9}}\right )^{\frac {3}{4}} + 125 \, b \sqrt {x}\right ) + 5 \, {\left (a^{2} b x^{3} + a^{3} x\right )} \left (-\frac {b}{a^{9}}\right )^{\frac {1}{4}} \log \left (-125 \, a^{7} \left (-\frac {b}{a^{9}}\right )^{\frac {3}{4}} + 125 \, b \sqrt {x}\right ) - 4 \, {\left (5 \, b x^{2} + 4 \, a\right )} \sqrt {x}}{8 \, {\left (a^{2} b x^{3} + a^{3} x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/(b*x^2+a)^2,x, algorithm="fricas")

[Out]

1/8*(20*(a^2*b*x^3 + a^3*x)*(-b/a^9)^(1/4)*arctan(-1/125*(125*a^2*b*sqrt(x)*(-b/a^9)^(1/4) - sqrt(-15625*a^5*b
*sqrt(-b/a^9) + 15625*b^2*x)*a^2*(-b/a^9)^(1/4))/b) - 5*(a^2*b*x^3 + a^3*x)*(-b/a^9)^(1/4)*log(125*a^7*(-b/a^9
)^(3/4) + 125*b*sqrt(x)) + 5*(a^2*b*x^3 + a^3*x)*(-b/a^9)^(1/4)*log(-125*a^7*(-b/a^9)^(3/4) + 125*b*sqrt(x)) -
 4*(5*b*x^2 + 4*a)*sqrt(x))/(a^2*b*x^3 + a^3*x)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 512 vs. \(2 (218) = 436\).
time = 49.02, size = 512, normalized size = 2.23 \begin {gather*} \begin {cases} \frac {\tilde {\infty }}{x^{\frac {9}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{9 b^{2} x^{\frac {9}{2}}} & \text {for}\: a = 0 \\- \frac {2}{a^{2} \sqrt {x}} & \text {for}\: b = 0 \\- \frac {5 a \sqrt {x} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} + \frac {5 a \sqrt {x} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {10 a \sqrt {x} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {16 a \sqrt [4]{- \frac {a}{b}}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {5 b x^{\frac {5}{2}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} + \frac {5 b x^{\frac {5}{2}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {10 b x^{\frac {5}{2}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} - \frac {20 b x^{2} \sqrt [4]{- \frac {a}{b}}}{8 a^{3} \sqrt {x} \sqrt [4]{- \frac {a}{b}} + 8 a^{2} b x^{\frac {5}{2}} \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(3/2)/(b*x**2+a)**2,x)

[Out]

Piecewise((zoo/x**(9/2), Eq(a, 0) & Eq(b, 0)), (-2/(9*b**2*x**(9/2)), Eq(a, 0)), (-2/(a**2*sqrt(x)), Eq(b, 0))
, (-5*a*sqrt(x)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4))
+ 5*a*sqrt(x)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) -
10*a*sqrt(x)*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 16
*a*(-a/b)**(1/4)/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 5*b*x**(5/2)*log(sqrt(x) -
 (-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) + 5*b*x**(5/2)*log(sqrt(x) +
(-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 10*b*x**(5/2)*atan(sqrt(x)/(
-a/b)**(1/4))/(8*a**3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)) - 20*b*x**2*(-a/b)**(1/4)/(8*a*
*3*sqrt(x)*(-a/b)**(1/4) + 8*a**2*b*x**(5/2)*(-a/b)**(1/4)), True))

________________________________________________________________________________________

Giac [A]
time = 1.69, size = 210, normalized size = 0.91 \begin {gather*} -\frac {5 \, b x^{2} + 4 \, a}{2 \, {\left (b x^{\frac {5}{2}} + a \sqrt {x}\right )} a^{2}} - \frac {5 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{2}} - \frac {5 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} b^{2}} + \frac {5 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{2}} - \frac {5 \, \sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{3} b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/(b*x^2+a)^2,x, algorithm="giac")

[Out]

-1/2*(5*b*x^2 + 4*a)/((b*x^(5/2) + a*sqrt(x))*a^2) - 5/8*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/
b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^2) - 5/8*sqrt(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1
/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^3*b^2) + 5/16*sqrt(2)*(a*b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqr
t(a/b))/(a^3*b^2) - 5/16*sqrt(2)*(a*b^3)^(3/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b^2)

________________________________________________________________________________________

Mupad [B]
time = 0.08, size = 77, normalized size = 0.33 \begin {gather*} \frac {5\,{\left (-b\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{4\,a^{9/4}}-\frac {5\,{\left (-b\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{4\,a^{9/4}}-\frac {\frac {2}{a}+\frac {5\,b\,x^2}{2\,a^2}}{a\,\sqrt {x}+b\,x^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(3/2)*(a + b*x^2)^2),x)

[Out]

(5*(-b)^(1/4)*atanh(((-b)^(1/4)*x^(1/2))/a^(1/4)))/(4*a^(9/4)) - (5*(-b)^(1/4)*atan(((-b)^(1/4)*x^(1/2))/a^(1/
4)))/(4*a^(9/4)) - (2/a + (5*b*x^2)/(2*a^2))/(a*x^(1/2) + b*x^(5/2))

________________________________________________________________________________________